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Peak Finding Using Biorthogonal Wavelets

Cheng-Yang Tan

Beams Division/Tevatron

ABSTRACT: We will show in this paper how we can �nd the peaks in the input

data if the underlying signal is a sum of Lorentzians. In order to project the data

into a space of Lorentzian like functions, we will show explicitly the construction

of scaling functions which look like Lorentzians. From this construction, we can

calculate the biorthogonal �lter coeÆcients for both the analysis and synthesis

functions. We then compare our biorthogonal wavelets to the FBI (Federal Bureau

of Investigations) wavelets when used for peak �nding in noisy data. We will show

that in this instance, our �lters perform much better than the FBI wavelets.



INTRODUCTION

The transverse tune spectra consists of many peaks from synchrotron lines. The sim-

plest way to �nd the peaks in the spectra is to perform a di�erential on the spectra and

to look for zero-crossings in order to isolate the peaks. However, this simple method is

inherently ineÆcient because the input data is usually quite noisy which results in zero-

crossings which produces false peaks. It is also well known that di�erentiation in itself

introduces more noise into the data and thus makes a bad situation even worse. Therefore

what is usually done is the use of a low pass �lter (LPF) which smooths out the signal

before the di�erential process. Since this traditional method requires a �lter, we can go

one step better and think of a set of tailored �lters which can be used to isolate the peaks.

It is well known that the Fast Wavelet Transform (FWT) when implemented as a

multi-resolution analysis are sets of high pass �lters (HPF) and low pass �lters with down-

sampling by 2 at each stage. Therefore, we propose a method where we use Lorentzian-like

scaling functions with compact support to be the vector space where the input data will be

projected. This will then allow us to easily see where the Lorentzian peaks are. Hence, the

goal is to �nd the �nite impulse response (FIR) coeÆcients of the scaling basis functions

and wavelet basis functions.

It is immediately obvious that a Lorentzian

f(x) =
1

a(x2 + b2)
(1)

is symmetric about x = 0, thus we expect the FIR �lter to have coeÆcients of the form

f: : : ; f2; f1; f0; f1; f2; : : :g, i.e. symmetric about f0. There is a well known theorem in

wavelet theory that a symmetric FIR �lter cannot yield orthonormal wavelets.y Thus, we

are left with the next simplest choice which are biorthogonal wavelets.

y For proof, see Rao1 page 87. For proof that orthogonal wavelets with �nite support cannot
be symmetric, see Daubachies2, Theorem 8:1:4 on page 252.

2



BIORTHOGONAL WAVELETS

Unlike orthogonal wavelets,y we have two vector spaces W and ~W where  2 W and

~ 2 ~W have the property Z 1

�1
dx  (x) ~ (x� n) = Æn0 (2)

This property (2), de�nes biorthogonality.

It is clear from (2) that unlike orthogonal wavelets, we have two sets of wavelets  ,

~ and thus two sets of scaling functions �, ~� which belong to the vector spaces V and ~V

respectively. Therefore, we must have more than one independent set of FIR coeÆcients

rather than the one independent set as in orthogonal wavelets.

In a multi-resolution analysis, we have embedded vector spaces V1 � : : : � Vk �

Vk�1 � : : : � V�1 which can be thought of as going from the �nest resolution V�1 to the

coarsest resolution V1. Suppose yk�1(t) is a L2-function in the vector space Vk�1, then

yk(t) 2 Vk is the approximation of yk�1(t) 2 Vk�1 i.e.

yk(t) =
1X

n=�1

a(k; n)�(2�kt� n) (3)

where

a(k; n) = 2�khyk�1(t); ~�(2
�kt� n)i (4)

The error �k 2Wk of approximating yk�1 by yk is

�k = yk�1(t)� yk(t)

=
1X

n=�1

b(k; n) (2�kt� n)
(5)

where

b(k; n) = 2�khyk�1(t); ~ (2
�kt� n)i (6)

y In order not to unnecessary add length to this rather long paper, we refer the inter-
ested reader to Vidakovi�c3 and Sweldens4 for some excellent tutorials on wavelets. Also
Mathsoft5 has an excellent wavelet resources webpage.
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Notice that a is obtained from the projection of y onto the subspace ~Vk and not Vk as in

orthogonal wavelets. Similary, b is obtained from the projection of yk�1 onto the subspace

~Wk rather than Wk.

It has been shown by Daubechies that calculating a and b in a multi-resolution analysis

can be done using FIR �lters. In particular the FIR coeÆcients fh0; : : : ; hng are the

coeÆcients of the polynomial

H(z) =
nX
0

hnz
�n (7)

with normalizing condition H(1) = 1.

Figure 1 The analysis �lters H0 and H1 are �lters which map the

input y to ~V and ~W respectively. The synthesis �lters ~F0 and ~F1
undo the the e�ect of the H0 and H1 �lters to produce y(n� `).

Let us write H0 to be the �lter associated with the scaling function � and H1 to be the

�lter associated with the scaling function  . Similarly ~F0 and ~F1 are the �lters associated

with ~� and ~ respectively. Then, Figure 1 shows the one stage of the FWT and inverse

FWT algorithm. Notice that although we have perfect reconstruction of the signal, there

is a �nite delay ` between the input and output6.
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CONSTRUCTING ~�

We present here an algorithm for �nding the scaling function ~� which is close to a

Lorentzian. We will use the usual Euclidean measure to de�ne close, i.e. we want to

minimize

� =
X
i

�
~�(xi)� L(xi)

�2
(8)

with the Lorentzian L

L(x) =
1

2�2
�
x2 +

�
1
2�

�2� (9)

where the normalizations of L are chosen so that both
R1
�1 dx L(x) =

R1
�1 dx L2(x) = 1.

For the purposes of this paper, we will construct a length 9 �lter associated with the

scaling function ~�. As was discussed previously, the �lter coeÆcients f ~fij i = 0; : : : ; 4g are

the coeÆcients of the expansion

~F0(z) = ~f0 +
~f1
z
+

~f2
z2

+
~f3
z3

+
~f4
z4

+
~f3
z5

+
~f2
z6

+
~f1
z7

+
~f0
z8

(10)

From Strang, we know that the smoothness of the scaling function depends on the number

of zeros ~F0 has at z = �1. In particular we choose ~F0 to have two zeros at z = �1 which

means that we reduce the number of degrees of freedom by two, i.e.

~F0(z) =

�
1 +

1

z

�2�
f0 +

f1
z
+
f2
z2

+
f3
z3

+
f2
z4

+
f1
z5

+
f0
z6

�
(10)

At this point, we use the computer algorithm shown in Figure 2, to �nd f0; : : : ; f3. Then

by expanding (10) we can calculate the �lter coeÆcients ~f0; : : : ; ~f4.
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Figure 2 This is the ow chart used to calculate ~f0; : : : ; ~f4. ~�

is generated from ~f0; : : : ; ~f4 using a time domain iteration method

described by Rao1. If j�j > Æ, coeÆcients f0; : : : ; f3 are changed using

Powell's method. We continue iterating until the required precision

is reached.

CONSTRUCTING � FROM ~�

Once the ~� FIR �lter coeÆcients ~f0; : : : ; ~f4 are found, we have to construct the �

FIR �lter coeÆcients from them. We know from our previous discussion that the � �lter

coeÆcients are h0; h1; : : : of the expansion

H0(z) = h0 +
h1
z
+
h2
z2

+ : : :+
hn
zn

(11)

In order to �nd H0(z), we will use the method from Strang6. It has been shown by Strang

that if P (z) is de�ned to be

P (z) = H0(z) ~F0(z) (12)

then

P (z)� P (�z) =
1

z`
(13)
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If we choose H0 to have three zeros at z = �1, then the highest power of H0 is 1=z
14 and

` = 10 which means that we can write H0 as

H0(z) =

�
1 +

1

z

�3�
�h0 +

�h1
z
+ : : :+

�h5
z5

+
�h5
z6

+
�h4
z7

+ : : :
�h1
z10

+
�h0
z11

�
(14)

Using the condition given by (13), we have exactly six equations and six unknowns

�h0; : : : ; �h5 which are

Coe�
h
H0; 1=z

0
i
= 10 f0�h0 + 2 f1�h0 + 2 f0�h1 = 0

Coe�
h
H0; 1=z

2
i
= 2

�
10 f0�h0 + 10 f1�h0 + 5 f2�h0 + : : :

�
= 0

Coe�
h
H0; 1=z

4
i
= 2

�
f0�h0 + 6 f1�h0 + 15 f2 �f0 + : : :

�
= 0

Coe�
h
H0; 1=z

6
i
= 2

�
5 f0�h0 + 10 f1�h0 + 11 f2�h0 + : : :) = 0

Coe�
h
H0; 1=z

8
i
= 2

�
10 f0�h0 + 5 f1�h0 + 10 f0�h1 + : : :

�
= 0

Coe�
h
H0; 1=z

10
i
= 4

�
f0�h0 + 5 f0�h1 + f1�h1 + : : :

�
= 1

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(15)

which we can easily solve. (The function Coe�[H0; 1=z
i] just picks out the 1=zith coeÆcient

of H0). By substituting the solution �h0; : : : ; �h5 into (14) and expanding, we obtain the �

�lter coeÆcients h0; : : : ; h7.
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THE FILTER COEFFICIENTS

With the � and ~� �lter coeÆcients constructed from the previous sections, the  and

~ �lter coeÆcients are trivially obtained by H1(z) = ~F0(�z) and ~F1(z) = �H0(�z). The

results are summarized in Table 1 where we list only the independent coeÆcients because

h8 = h6 etc., and ~f3 = ~f5 etc. As a check that the coeÆcients are normalized correctly, we

see that
P14

i=0Coe�
�
H0; 1=z

i
�
=
P8

i=0Coe�
h
~F0; 1=z

i
i
= 1. The � and  functions and

~� and ~ functions are shown in Figure 3 which are constructed from the �lter coeÆcients

of Table 1. Again, as a check, we see that the integral of  and ~ are zero as required.

Table 1. The H0 and ~F0 CoeÆcients

i hi ~fi

0 �0:01423519568 0:0357152

1 0:02101871946 0:0527346

2 0:07626104903 0:0151701

3 �0:04290477625 0:197265

4 �0:25612225073 0:398228

5 �0:1805498895 -

6 0:4440965418 -

7 0:9048721813 -

To see how well the �lter coeÆcients work, we can construct a Lorentzian (Figure 4)

and pass it through the ~� and ~ �lters. We would expect that there will only be one

large � coeÆcient with the rest small. This is indeed what we see in Figure 5 where the

coeÆcients are plotted out.
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Figure 3 The analysis �lters produce the scaling and wavelet func-

tions � and  . The analysis �lters map the input data to the vector

space where the scaling functions ~� look similar to Lorentzians.

PEAK FINDING

The idea behind our peak �nding method is to assume that the peaks come from

Lorentzians. If the underlying basis are Lorentzians then we can express the input data

y(t) as

y(t) =
MX
i=0

aiLi(t) (16)

where ai are constants. Therefore, if we can project the y(t) into Lorentzian space, we

should be able to recover ai's. Thus by using the �lters that we have discussed, we should

be able to �nd the peaks in y(t) by looking for large ai's after it goes through our �lters.
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Figure 4 This Lorentzian L(t) = 0:05
t2+0:05

is used as an example of

how we project this into V .

Table 2. The FBI H0 and ~F0 CoeÆcients

i hi ~fi

0 0:03 �0:05

1 �0:02 �0:03

2 �0:08 0:3

3 0:27 0:56

4 0:6 0:3

5 0:27 �0:03

6 �0:08 �0:05

7 �:02 -

8 0:03 -

As an illustration, let us see how well this idea works. We will compare our �lters

to the FBI �lters6. The �lter coeÆcients to two decimal places of the FBI 9=7 �lters are
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Figure 5 By feeding the Lorentzian L(t) shown in Figure 4 into the
~� and ~ �lters to three levels, we see that L(t) is projected into V3.

The coarse and detail coeÆcients are small everywhere except at one

point. Thus we have successfully projected L(t) into a Lorentzian like

space described by V3, i.e. L(t) � 1:64 �(23t� 17).

given in Table 2. We construct a noisy input y(t) with three Lorentzians

y(t) =
9

x2 + 0:15
+

18

(x� 1)2 + 0:3
+

18

(x� 2:5)2 + 0:6
(16)

with noise jn(t)j < 20 added to it. The result is shown in Figure 6.

yN (t) is then passed through our �lters and we clearly see that, above the noise oor,

which we pick to be y = 20, there are three large coeÆcients relative to its neighbours in
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Figure 6 The top �gure shows three Lorentzians y(t) = 9
x2+0:15

+
18

(x�1)2+0:3
+ 18

(x�2:5)2+0:6
. Uniform noise �20 < n(t) < 20 is then

added to y(t) to produce yN (t) which is shown in the bottom �gure.
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Figure 7 yN (t) shown in Figure 6 is fed through the ~� and ~ �lters

to three levels and we can clearly see that there are three peaks in the

data.

Figure 7. We conclude, then, that there are three peaks in the original input yN (t). When

LN is passed through the FBI �lters, we see that the peaks are not as distinct although

they perform the same type of noise �ltering as our �lters. In fact, although the FBI �lter

picks out two of the three peaks, the third one is barely visible.
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Figure 8 We apply the FBI �lters to yN (t) and compare the result

with our �lters. We see that the peaks are not as well de�ned as

Figure 7.

CONCLUSION

We have shown how we can construct biorthogonal scaling functions and wavelets

which will enable us to easily �nd the peaks in the input data if the underlying vector

space is Lorentzian like. We have also shown that compared to the FBI �lters, our �lters

do a much better job in picking out the peaks in the input data.
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